P-Values Utilities
Functions:
Name | Description |
---|---|
compute_clt_p_values |
Compute p-values using the Central Limit Theorem (CLT) inequality. |
compute_hb_p_values |
Compute Hoeffding-Bentkus inequality for given risk values. |
compute_clt_p_values
compute_clt_p_values(risk_values, alpha, n_samples)
Compute p-values using the Central Limit Theorem (CLT) inequality.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
risk_values
|
ndarray
|
Array of risk values. |
required |
alpha
|
float
|
Threshold value for risk. |
required |
n_samples
|
int
|
Number of samples used to compute risk values. |
required |
Returns:
Name | Type | Description |
---|---|---|
clt_p_values |
ndarray
|
Array of p-values computed using the CLT inequality. |
Source code in risk_control/tools/pvalues.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
compute_hb_p_values
compute_hb_p_values(risk_values, alpha, n_samples)
Compute Hoeffding-Bentkus inequality for given risk values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
risk_values
|
ndarray
|
Array of risk values. |
required |
alpha
|
float
|
Threshold value for risk. |
required |
n_samples
|
int
|
Number of samples used to compute risk values. |
required |
Returns:
Name | Type | Description |
---|---|---|
hb_p_values |
ndarray
|
Array of p-values computed using the Hoeffding-Bentkus inequality. |
Source code in risk_control/tools/pvalues.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|