Note
Click here to download the full example code
Selective Regression
This example shows how to use the SelectiveRegression and RiskController classes
to perform selective regression.
import os
import sys
from typing import List
basedir = os.path.abspath(os.path.join(os.path.curdir, ".."))
sys.path.append(basedir)
basedir = os.path.abspath(os.path.join(os.path.curdir, "."))
sys.path.append(basedir)
import numpy as np
from utils.data import get_data_regression
from utils.model import get_model_regression
from mlrisko import RiskController
from mlrisko.decision import SelectiveRegression
from mlrisko.decision.base import BaseDecision
from mlrisko.parameter import BaseParameterSpace
from mlrisko.plot import plot_p_values, plot_risk_curve
from mlrisko.risk import AbstentionRisk, BaseRisk, MSERisk
random_state = 42
np.random.seed(random_state)
First, we load the data and train a model.
mse_max = 20.0
X_train, X_cal, X_test, y_train, y_cal, y_test = get_data_regression(random_state)
clf, res = get_model_regression(X_train, y_train, X_cal, y_cal)
print(f"Mean MSE: {np.nanmean((clf.predict(X_test) - y_test) ** 2):.2f}")
Out:
Mean MSE: 0.68
Here, we define the decision, the risks, and the parameter space.
We use the SelectiveRegression decision, the MSERisk and AbstentionRisk risks.
- The
SelectiveRegressiondecision is a selective regression decision. In practice, it is a regression model with a threshold on the residual. If the residual is below the threshold, the prediction is accepted, otherwise it is rejected. The threshold is the parameter to tune. - The
MSERiskrisk is the mean squared error risk. We want the mean squared error to be controlled at a given level (here 0.3, TODO: report the target performance instead of the target risk). - The
AbstentionRiskrisk is the ratio prediction risk. It is the ratio of accepted predictions. We want the ratio of predictions to be controlled at a given level (here 0.2, TODO: report the target performance instead of the target risk).
We want to find the valid thresholds that control the risks at the given levels with a confidence level (here 0.9, TODO: report the confidence level instead of the delta).
Among the valid thresholds, we want to find the one that minimizes the mean squared
error (beause it is the first risk in the list of risks and control_method="lmin").
parameter_range = np.linspace(0.05, 5.0, 100)
decision: BaseDecision = SelectiveRegression(estimator=clf, residual=res)
risks: List[BaseRisk] = [MSERisk(0.6, mse_max=mse_max), AbstentionRisk(0.2)]
params: BaseParameterSpace = {"threshold": parameter_range}
controller = RiskController(
decision=decision,
risks=risks,
params=params,
delta=0.1,
)
Now, we fit the model and plot the results. In practice, this function will be used to find the valid thresholds that control the risks at the given levels with a confidence level given by the data.
A summary of the results is printed that contains the optimal threshold and the corresponding risks.
controller.fit(X_cal, y_cal)
controller.summary()
Out:
=== SUMMARY ===
p(risk<=alpha) >= 1-delta
1-delta: 0.90
=== risks ===
mse | optimal: 0.53 | alpha: 0.6
abstension | optimal: 0.17 | alpha: 0.2
=== params ===
threshold | optimal: 0.90
We can plot the risk curves for each risk.
plot_risk_curve(controller)

Out:
/Users/thibaultcordier/Projects/risk-control/mlrisko/plot.py:150: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
plt.show()
We can also plot the p-values for each multiple tests (parameter space).
plot_p_values(controller)

Out:
/Users/thibaultcordier/Projects/risk-control/mlrisko/plot.py:33: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
plt.show()
Finally, we can use the optimal threshold to predict on the test set and compute the risks. The risks are computed on the test set and converted to performance metrics. We can check that the risks are controlled at the given levels.
y_pred = controller.predict(X_test)
for risk in risks:
ratio = risk.convert_to_performance(np.nanmean(risk.compute(y_pred, y_test)))
print(f"{risk.name}: {ratio:.2f}")
print(MSERisk(mse_max)._compute_from_predictions(controller.predict(X_test), y_test))
print(MSERisk(mse_max)._compute_from_estimator(controller, X_test, y_test))
Out:
mse: 0.55
abstension: 0.16
0.3096934191981804
0.3096934191981804
Total running time of the script: ( 0 minutes 1.070 seconds)
Download Python source code: plot_regression.py